Мы используем cookie файлы.
Пользуясь сайтом, вы соглашаетесь с нашей Политикой конфиденциальности.

Лаборатория "Исследования и разработка космических высокоимпульсных высокочастотных плазмодинамических электроракетных ионных двигателей"

Приглашенный ученый Лёб Хорст Вольфганг Йозеф Адам Германия
Номер договора
11.G34.31.0022
Период реализации проекта
2010-2014
Заведующий лабораторией

По данным на 15.02.2021

17
Количество специалистов
376
научных публикаций
21
Объектов интеллектуальной собственности
Общая информация

Для ракетных двигателей одним из ключевых параметров является скорость истечения рабочего тела из двигателя. Для жидкостного ракетного двигателя она составляет около 4 км/сек. Для исследования дальнего космоса требуются более высокие скорости – от 30 до 70 км/сек. Эти параметры могут обеспечить высокочастотные ионные двигатели. В Московском авиационном институте давно шли работы над электрическими ракетными двигателями, которые преобразуют электрическую энергию в направленную энергию частиц. К сожалению, в связи с кризисом российской космической отрасли в 90-х гг. эти работы были сокращены. Благодаря конкурсу мегагрантов появилась возможность возобновить эти работы. Так, в 2010 году была создана Лаборатория высокочастотных ионных двигателей.

Наименование проекта: Исследования и разработка космических высокоимпульсных высокочастотных плазмодинамических электроракетных ионных двигателей

Приоритет СНТР: а

Цели и задачи
Направления исследований:

  • Разработка физико-технических основ и анализ перспектив применения процессов высокочастотной (ВЧ) плазмодинамики для создания космических электроракетных двигателей (ЭРД) с высоким удельным импульсом тяги и ресурсом в широком диапазоне мощности, в частности высокочастотных ионных двигателей (ВЧИД).
  • Разработка и исследование подсистем ВЧИД: ВЧ разрядных камер, ионно-оптических систем с высокой плотностью тока, ВЧ генераторов, обеспечивающих высокие КПД и ресурс ВЧИД.
  • Развитие существующих и создание новых физических моделей функционирования как отдельных элементов ВЧИД, так и ВЧИД в целом, разработка программно-алгоритмического обеспечения управления ВЧИД.
  • Модернизация и создание экспериментальных стендов для исследования и испытаний ВЧИД с высокими удельными импульсами тяги, оснащенных современным вакуумным оборудованием и диагностическими средствами.
  • Определение перспектив использования и освоение новых технологий и материалов для усовершенствования конструкции и энергетических характеристик ВЧИД.
  • Разработка, исследование и передача в промышленные организации экспериментальных образцов ВЧИД по согласованным исходным данным.
  • Разработка схем осуществления перспективных задач космических исследований в части межорбитальных и межпланетных перелетов с использованием маршевых ВЧИД.
  • Исследование принципов интеграции ВЧИД с системами КА, в частности для обеспечения электромагнитной совместимости двигателей с КА и его бортовыми радиотехническими системами.
  • Баллистический анализ перспективных транспортных задач с использованием ВЧИД.

Цель проекта:

  • Исследование и разработка высокоимпульсных высокочастотных плазмодинамических электроракетных ионных двигателей с высоким удельным импульсом тяги
  • Создание на основании проведенных поисково-прикладных исследований экспериментальных образцов высокочастотных ионных двигателей (ВЧИД) и технологических источников ионов на их базе для внедрения в космическую технику
Практическое значение исследования
Научные результаты:

  1. Разработана физико-математическая модель процессов, протекающих в ИОС ВЧИД, включающая расчет электростатических полей электродов, траекторий движение первичного ионного пучка, траекторий вторичных ионов перезарядки, образующихся в объеме первичного пучка и в зоне нейтрализации, а также скорости эрозии УЭ. Проведено численное моделирование процессов в элементарной ячейке ИОС заданных геометрий, соответствующих конструкции ВЧИД-16 и ВЧИД-45М Ресурс УЭ из углеродного композита при номинальных режимах работы двигателя оценивается по результатам моделирования в 30000 часов.
  2. Разработана усовершенствованная версия расчетной тепловой модели ВЧИД, основанной на расчете мощности, выносимой из плазмы ГРК потоками ионов и электронов. Расчеты выявили возможность заметного снижения температуры ГРК и ЭЭ, наиболее критического элемента конструкции ВЧИД в плане его термической деформации при тепловом нагружении. Результаты выполненных тепловых расчетов использованы в качестве исходных данных для проведения расчетов термической деформации электродов ИОС.
  3. Выполнен цикл работ по доработке и адаптации расчетной термомеханической модели узла ИОС применительно к ВЧИД с диаметром ионного пучка 150…200 мм. Были численно определены дополнительные прогибы электродов, выполненных из разных материалов и имеющих различный начальный прогиб при тепловом нагружении с радиальным градиентом температуры 5 0/см.        
  4. Разработана тепловая модель двигателя ВЧИД-8 в приближении тепловыделения в объеме плазмы как в твердом элементе с распределенной объемной электропроводностью, подверженному индукционному нагреву. Такая модель автоматически реализует равенство мощности, выделенной в объеме и подведенной к стенкам. Проведено тепловое моделирование с использованием программного комплекса Comsol Multiphysics® v4.3b.
  5. Разработаны лабораторные модели ВЧИД-10, ВЧИД-16, ВЧИД-16М, ВЧИД-45М.
  6. Найдены конструктивные решения, позволившие значительно снизить цену иона и приблизиться к мировому уровню. Повышение характеристик модели ВЧИД ожидается при переходе к камерам меньшей длины, а также сферической и конической формы. В настоящее время данные камеры изготовлены и ведутся работы по подготовке к испытаниям моделей с ними.
  7. Проведено исследование физических процессов в лабораторных моделях ВЧИД с целью получения режима максимальной эффективности. Показано, что для получения режима максимального КПД в индукционном разряде с емкостной связью в отличие от режима максимальной мощности необходимо, чтобы импеданс ВЧГ был меньше импеданса нагрузки, состоящей из согласующей цепи, ГРК совместно с индуктором и их паразитными емкостями. При выполнении указанных рекомендаций КПД ВЧГ совместно с разрядом может превышать 90 %.
  8. Разработана, рассчитана и проанализирована эквивалентная схема индукционного разряда с емкостной связью, предназначенная для определения электрического импеданса ГРК совместно с индуктором. Результаты анализа показывают, что активная и реактивная части импеданса нагрузки зависят от основных плазменных параметров. Проведены детальные расчеты для моделей ВЧИД-45М и ВЧИД-10. В отличие от большинства публикаций, где, как правило, рассматривается цилиндрический индуктор, длина которого много больше радиуса, в данной работе дополнительно учтены конечные продольные размеры катушки индуктора, в частности, проведен анализ для короткого индуктора.
  9. Разработан и изготовлен лабораторный образец ВЧГ-3000, предназначенного для использования в составе линейки ВЧИД размерностью ионного пучка от 100 до 450 мм. В основу работы ВЧГ положен принцип формирования сигнала с перестраиваемой частотой с помощью маломощного ЗГ, с последующим усилением в широкополосном усилителе и в усилителе мощности.
  10. Проведены испытания ВЧГ-3000 на калиброванную резистивную нагрузку в виде коаксиального резистора сопротивлением 62 Ом с рассеиваемой мощностью 1000 Вт показавшие, что ВЧГ-3000 в исследуемом диапазоне частот обеспечивает требуемую мощность на резистивной нагрузке, а максимальная нелинейность показаний уровня ВЧ мощности, по данным стрелочного прибора генератора во всем диапазоне частот и мощностей не превышает 15 %.
  11. Разработанный лабораторный образец ВЧГ-3000 может быть использован для отработки в наземных условиях линейки ВЧИД размерностью ионного пучка от 100 мм до 450 мм. При этом он устанавливается за пределами вакуумной камеры, а ввод ВЧ энергии осуществляется с помощью фидерных линий. В случае размещения двигателя на фланце с проходными разъемами для индуктора, СУ размещается вне вакуумной камеры. При размещении двигателя непосредственно в вакуумной камере СУ так же размещается в вакуумной камере в непосредственной близости от выводов индуктора.
  12. С использованием стендового ВЧГ-3000 проведены исследования режимов работы ВЧИД-10 для трех рабочих частот и трех значений объемного расхода РТ. Для каждого из вышеуказанных режимов осуществлялось изменение напряжения на индукторе при одновременном контроле тока пучка. Показано, что за счет регулировки выходной мощности генератора можно обеспечить изменение тока пучка от 20 мА до 190 мА, что полностью перекрывает возможные режимы работы ВЧИД-10.
  13. Разработана методика измерения параметров ЭМП, создаваемых при работе ВЧИД, в диапазоне частот 1…18 ГГц. В основу методики положены измерения мощности шумового процесса (возникающего при работе ВЧИД) на выходе измерительной антенны с последующим пересчетом в напряженность электрического поля в раскрыве антенны. Измерения проводятся во всей полосе частот измерительной антенны и представляются в виде графиков зависимостей абсолютных значений напряженности электрического поля от частоты.
  14. Разработанная методика измерения параметров электромагнитных полей, создаваемых при работе ВЧИД, представляет собой эффективный инструмент по исследованию помехоэмиссии линейки ВЧИД размерностью ионного пучка от 100 мм до 450 мм. С ее помощью можно проводить исследование помехоэмиссии ВЧИД в интересах задач электромагнитной совместимости с целью определения степени их влияния на бортовые системы КА.
  15. Представлена методика оптимизации многовитковых траекторий межорбитального перелета КА с маршевой ЭРДУ. Особенностью представленной методики, по сравнению с результатами, представленными в предыдущих отчетах, является использование точной, неосредненной математической модели невозмущенного оптимального движения КА. Разработаны математические модели и методы моделирования возмущенных квазиоптимальных траекторий перелета с использованием, полученного ранее в устойчивого квазиоптимального управления с обратной связью. Представлен сравнительный анализ использования ВЧИД и СПД на современных и перспективных геостационарных КА. Выработаны рекомендации по областям применения ВЧИД. Перспективной областью применения ВЧИД с электрической мощностью 2 - 3 кВт оказалось их использование в составе корректирующих ЭРДУ геостационарных КА. ВЧИД мощностью около 5 кВт в ряде случаев могут составить конкуренцию двигателям СПД-140Д в задачах довыведения КА с маршевой ЭРДУ на ГСО по комбинированной схеме при возможности увеличения времени транспортной операции. Несмотря на то, что удельный импульс ВЧИД (в отличие от СПД-140Д) существенно больше оптимального для этой задачи, высокий КПД ВЧИД позволяет скомпенсировать связанные с этим потери в длительности выведения при корректной оптимизации параметров орбиты отделения КА от разгонного блока. Безусловно, перспективным является использование ВЧИД большой мощности (25…50 кВт) в составе перспективных многоразовых межорбитальных буксиров, имеющих в своем составе ТЭМ мегаваттного класса. Было определено, что один такой буксир может обеспечить современный коммерческий грузопоток на ГСО, реализуемый в Российской Федерации, в течение 5…6 лет при сокращении требуемого числа пусков ракета-носителей для реализации этой программы в 2,33…3,75 раза.
Внедрение результатов исследования:

Результаты исследований использованы при выполнении НИР и ОКР Федеральной космической программы Российской Федерации на 2016 – 2025 г., утвержденной постановлением Правительства Российской Федерации от 23 марта 2016 г. № 230. Выполнены и выполняются следующие работы: «Устойчивость», «Партитура», «ДУ КА», «Форсаж», «Отработка» и «Эксплуатация МКС» и др.

Образование и переподготовка кадров:

За время существования лаборатории четырнадцать студентов получили дипломы о высшем образовании, было защищено шестнадцать кандидатских работ с присвоением званий кандидатов технических и физико-математических наук, а также три докторских работы с присвоением званий докторов технических наук.

Организационные и инфраструктурные преобразования:

Произведена модернизация и дооснащение стендовой базы, которая позволяет производить отработку и исследования рабочих процессов электроракетных двигателей мощностью до 50 кВт с поддержанием глубокого вакуума на расходах рабочего тела Хе до 30 мг/с. Стенд был оборудован необходимыми для работы ВЧИД системами электропитания, системами подачи рабочих газов в двигатели при их работе в камере, системами измерения основных параметров двигателей (потребляемой мощности, расходов рабочих газов, получаемой тяги и др.), системами автоматизированного сбора экспериментальных данных.

На стенде производятся исследования характеристик двигателей ВЧИД с двумя вакуумными камерами диаметром 2 м и рабочей длиной до 6,5 м и до 3,5 м, откачиваемых безмасляными криогенными, турбомолекулярными и форвакуумными насосами, обеспечивающими остаточное давление в вакуумной камере до 3,5´10-6 мм.рт.ст. и рабочее давление не выше 5´10-5 мм.рт.ст. при работе в камере ВЧИД (данные по рабочему давлению в вакуумной камере соответствуют лучшим мировым стандартам).

Сотрудничество:

Проведение совместной подготовки ряда Российско-Германских конференций по тематике электроракетных двигателей и их применения. Проведены стажировки сотрудников лаборатории ВЧИД одновременно с прохождением V Российско-Германской конференции по электрическим ракетным двигателям (V Russian-German Conference on Electric Propulsion), которая прошла с 07.09.2014 года по 12.09.2014, г. Дрезден, Германия, а также с прохождением 34-ой Международной конференции по электрическим двигателям (34th International Electric Propulsion Conference), которая прошла с 04.07.2015 года по 10.07.2015, г. Кобе, Япония (Kobe, Japan). Совместно с Гисенским Университетом им. Юстуса Либиха проведена работа по оценке тепловых полей ВЧИД с диаметром рабочей части 80 мм, а так же осуществлена поставка системы питания, управления источника и самого источника RIM-20.


Скрыть Показать полностью
Riaby, V.A., Savinov, V.P., Masherov, P.E., Yakunin, V.G
Note: Additionally refined new possibilities of plasma probe diagnostics // Review of Scientific Instruments - 2018 г., том 89, выпуск 3, номер статьи 036102
Balashov, V., Cherkasova, M., Kruglov, K., Kudriavtsev, A., Masherov, P., Mogulkin, A., Obukhov, V., Riaby, V., Svotina V.
Radio frequency source of a weakly expanding wedge-shaped xenon ion beam for contactless removal of large-sized space debris objects // Review of Scientific Instruments - 2017 г., том 88, выпуск 8, номер статьи 083304
Masherov, P.E., Riaby, V.A., Abgaryan, V.K.
Refined possibilities for plasma probe diagnostics // Review of Scientific Instruments - 2016 г, том 87, выпуск 8, номер статьи 086106
Loeb, H.W., Petukhov, V.G., Popov, G.A., Mogulkin, A.I.
A realistic concept of a manned Mars mission with nuclear-electric propulsion // Acta Astronautica - 2015 г., том 116, номер статьи 5511
Nadiradze, A.B.
Modeling of Force Impact on Large-Sized Object of pace Debris by Ion Injection / A.B. Nadiradze, V.A. Obukhov, G.A. Popov, V.V. Svotina // 13 International Conference «Aviation and Cosmonautics 2014». – M.: MAI. – 2014, 18 – 21 November. – С. 272 - 273
Abgaryan, V.K.
IGUN Code Application for Analyzing Processes in the Grid System of Ion Thruster / V.K. Abgaryan, R.V. Akhmetzhanov, H.W. Loeb, V.A. Obukhov, M.V. Cherkasova // 5 Russian-German Conference on Electric Propulsion and Their Application «Electric Propulsion – New Challenges». – Giessen, Germany. – 2014, 7 – 12 September
Riaby, V.A.
On the Reliability of Probe Diagnostics in RF Plasma / V.A. Riaby, V.A. Obukhov // Plasma Physics Reports. – 2013. – V. 39, № 13. – с. 1130-1135. DOI: 10.1134/S1063780X13050164 1063-780X
Abgaryan, V.K.
Numerical Simulation of a High-Perveance Ion-Extractiob System with a Plasma Emitter / V.K. Abgaruan, R.V. Akhmetzhanov, M.V. Cherkasova, H.W. Loeb, V.A. Obukhov // Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. – 2013. – V. 7, № 6. – С. 1092-1099 DOI: 10.1134/S1027451013060037 1027-4510
Akhmetzhanov R., Loeb H., Obukhov V., Cherkasova M.
Numerical Simulation of a System of Formation of an Intense Ion Beam From Gas Discharge Plasma of an Ion Thruster // IAC-13-C4.4.11. 64 International Astronautical Congress. – 2013, 23-27 September. – Beijing, China. ISSN 1995-6258, 6 p
Victor Balashov, Sergey Khartov, Andrey Mogulkin, Vladislav Nigmatzyanov, Oleg Peysakhovich, Lev Rabinsky and Sergey Sitnikov
Advanced Ceramic Materials and 3D Printing Technologies in Application to The Electrically Powered Spacecraft Propulsion// Advances in the Astronautical Sciences Series – 2020, Том: 170, стр.: 857, номер статьи: IAA-AAS-SciTech2018-026 AAS 18-869
Фотоальбомы
Понедельник , 02.12.2019
Другие лаборатории и ученые
Лаборатория, принимающая организация
Область наук
Город
Приглашенный ученый
Период реализации проекта
Центр лабораторной астрофизики

Физический институт им. П.Н. Лебедева Российской академии наук

Науки о космосе и космические исследования

Москва

Кайзер Ральф Инго

США, Германия

2021-2023

Лаборатория фундаментальной и прикладной рентгеновской астрофизики

Институт космических исследований Российской академии наук

Науки о космосе и космические исследования

Москва

Поутанен Юри

Финляндия

2018-2022

Лаборатория атмосфер планет земной группы и землеподобных экзопланет

Институт космических исследований Российской академии наук

Науки о космосе и космические исследования

Москва

Берто Жан-Лу

Франция

2017-2019