МЕГАГРАНТЫ

Эпигенетика: кто управляет нашей ДНК и как это можно использовать

65b50 Эпигенетика в ее нынешнем обличье появилась в начале двадцать первого века и для многих пока остается чем-то неизвестным и загадочным. А тем временем она активно развивается: ученые совершают фундаментальные открытия, кардинально меняющие представление о работе клеточных процессов сохранения и реализации наследственной информации. О том, что из себя представляет эпигенетика, кто управляет нашими генами и какими успехами может похвастаться его коллектив Indicator.Ru рассказал создатель лаборатории регуляции транскрипции и репликации ДНК на кафедре биоинженерии биологического факультета МГУ Василий Студитский.
Лабораторные части МГУ старой застройки имеют особую атмосферу. Их мрачные коридоры ассоциируются с советскими секретными лабораториями, и кажется, что за железными дверями в тени громоздких приборов скрываются угрюмые ученые-творцы. Но вот мы оказываемся в лаборатории Василия Студитского, расположенной в лабораторном корпусе Б. Конечно, есть и творцы, и приборы, но атмосфера светлая и дружелюбная.
Здесь расположено историческое ядро лаборатории, вокруг которого сконцентрирована работа группы регуляции транскрипции и репликации ДНК. Коллектив занимается исследованием эпигенетических факторов — всего того, что определяет, будет ли реализована наследственная информация, и если будет, то как. В таких механизмах важную роль играет структура хроматина (комплекса из ДНК, РНК и белков), постоянно изменяющаяся под действием различных факторов. Это называется динамикой структуры хроматина. Важную роль в этом процессе играют ядерные белки гистоны. ДНК несколько раз обвивает их, формируя стабильную катушку-нуклеосому, которую можно создать из очищенных белков и фрагментов ДНК в пробирке, а потом наблюдать за поведением получившегося хроматина в присутствии различных факторов. Если кратко, то в этом и заключается суть работы лаборатории.
Значительная часть оборудования предназначена для получения объектов исследования — сборки многокомпонентных структур, синтеза и очистки ДНК и белков. Для анализа используется два прибора. Первый, — Typhoon, —позволяет сканировать и анализировать объекты, отдельные фрагменты которых содержат радиоактивную или окрашенную метку. Таким образом можно увидеть интересующие исследователя молекулы, определить содержание вещества, понять, с чем и насколько эффективно взаимодействует соединение.
Второй прибор — настоящая гордость коллектива. Он создан на основе конфокального микроскопа и позволяет исследовать взаимодействие между молекулами и их частями методом FRET. Суть этого метода заключается в том, что при сближении несущих флуоресцентную метку молекул возникает характерное свечение. Такой принцип лежит в основе исследований динамики структуры хроматина: мечение частей нуклеосомы разными флюорофорами позволяет наблюдать изменение цвета свечения и его интенсивности в зависимости от того, что с чем взаимодействует и на каком расстоянии находится.
Лаборатория создана в рамках первой волны мегагрантов (2010-2012 годы), и после завершения программы ее судьба сложилась непросто, но успешно. О том, как она была создана, через что прошла и чего добилась, в интервью Indicator.ru рассказал — Василий Студитский, профессор Центра Исследований Рака Фокс Чейз в США, заведующий лабораторией механизмов и регуляции транскрипции.

— С чего началась ваша лаборатория?
— Лаборатория была создана на основе мегагранта, который мы получили в 2010 году. Мне предложили работать вместе с уже существующими группами на базе кафедры биоинженерии. В первую очередь было интересно разработать в России новые техники, в числе которых наша основная — FRET. В Москве я общался с возможными коллабораторами, однако наиболее интересное и продуктивное сотрудничество сложилось здесь, в МГУ. У Алексея Валерьевича Феофанова (профессор кафедры биоинженерии биологического факультета МГУ) уже были приборы, регистрирующие флуоресценцию, хоть и «заточенные» под другие задачи. На деньги от мегагранта Алексей Валерьевич построил подходящие для наших общих задач устройства. Также оказалось интересно сотрудничать с двумя другими коллегами: это Ольга Сергеевна Соколова (доцент кафедры биоинженерии), высокого уровня микроскопист, и Алексей Константинович Шайтан (ведущий научный сотрудник кафедры биоинженерии), замечательный моделировщик, с моей легкой руки перешедший к работе с хроматином (смеется). Хроматин в то время был (и остается) моей основной тематикой, однако у коллег, уже состоявшихся в собственных областях ученых, экспертиза по данной теме оказалась минимальной. Поначалу было сложно, но мы справились. Я думаю, хорошим показателем является тот факт, что после окончания мегагранта и потери денег ни один из сотрудников не захотел отойти отнашей тематики. В этот критический момент, не без поддержки руководства университета, мы выжили. Лаборатория получила новый грант и осталась «на плаву».
— Каковы основные направления работы?
— В начале этого века профессор университета Рокфеллера Дэвид Аллис (David Allis) предложил концепцию гистонового кода. Ее суть заключается в существовании набора из более чем десяти химических модификаций белков-гистонов, определяющих развитие многих клеточных программ, в том числе связанных с развитием рака. Свою работу по этой тематике я начал в Институте молекулярной биологии им. В. А. Энгельгардта под руководством академика РАН Андрея Дарьевича Мирзабекова, который тогда занимался хроматином. Мои ранние исследования посвящены изучению его динамики непосредственно в клетке. Затем я перешел в американскую лабораторию известного ученого Гари Фельзенфельда (Gary Felsenfeld) в Национальном институте здоровья США. Здесь начался очень продуктивный период: я начал работать с биологическими системами in vitro, применяя биохимические и биофизические методы исследования; за три года опубликовал несколько статей в Science, Cell и других хороших журналах.
Тут же я совершил свое первое серьезное открытие. Поскольку нуклеосомы являются очень стабильными структурами, было непонятно, как через них проходят ферменты РНК— и ДНК-полимеразы, тоже прочно связывающиеся с ДНК в ходе своей работы по синтезу полинуклеотидных цепей. На модельных ферментах бактерий я выяснил механизм этого загадочного процесса. При транскрибировании (синтезе РНК с ДНК-матрицы) временно возникают очень маленькие внутринуклеосомные петли, по которым движется полимераза. Сзади и спереди от нее возникают контакты с гистонами, позволяющие системе как бы переносить белки-гистоны вокруг фермента. После этого я получил собственную лабораторию, где были открыты подобные механизмы и для эукариотических ДНК— и РНК-полимераз. Предложенные механизмы позволяют объяснить, как гистоны и их модификации сохраняются в различных клеточных процессах.
Этот опыт и осознание важности гистонового кода в клеточных процессах стали основой для научных интересов созданной лаборатории. Кроме продолжения исследований открытых механизмов, ведутся работы с гистоновыми шаперонами — белками, отвечающими за формирование и функционирование нуклеосом. Один из них — PARP-1 — уже долгое время служит мишенью для разработки антираковых лекарств. Другой представитель класса, шаперон FACT, играет важную роль в транскрипции, репликации и, опять же, в развитии рака. Эти белки во многом похожи, однако есть значительные структурные и функциональные отличия.
— Расскажите, пожалуйста, об основных достижениях лаборатории?
— Тут стоит сфокусироваться на последних пяти годах нашей работы, которая началась, на самом-то деле, уже после завершения мегагранта. Из больших достижений —продолжение исследований механизма транскрипции хроматина, который мы называем «нуклеосомный цикл», поскольку нуклеосомы восстанавливаются на исходном месте после прохождения фермента. Внутри этой тематики открыто еще много фундаментальных вещей. Например, обнаружено, что в стабилизации гистонов при трансрипции ключевую роль играют аллостерические эффекты, основанные на взаимодействии гистонов и ДНК в нуклеосоме. Другим серьезным достижением является открытие АТФ-независимой перестройки хроматина белком FACT:обычно перестройки хроматина происходят с затратой энергии АТФ. Соответствующая статья была опубликована в 2016 году и привлекла внимание наших коллег. Еще одно замечательное открытие заключается в том, что другой наш объект, PARP, тоже может изменять структуру хроматина, хоть и не так значительно, как FACT. Ранее непонятный механизм его действия теперь раскрыт.
Стоит упомянуть, что наши объекты сложны для исследования в техническом плане, а потому используемые техники не очень распространены в мире. Это делает нас, в некоторой степени, лидерами по данной тематике на мировом уровне. Результаты же наших трудов в течение последних пяти лет составляют примерно пятьдесят публикаций с суммарным импакт-фактором около 115.
Еще стоит отметить тот факт, что у нас развито сотрудничество и с американскими, и с другими российскими группами, так что масштаб работ довольно велик. В таком сотрудничестве, кроме научного компонента, есть и элемент смягчения существующего политического противостояния.
— Чем живет лаборатория сейчас, спустя столько лет после завершения мегагранта?
— После завершения мегагранта нам было тяжело в плане финансирования. Внезапная потеря денег стала действительно критическим моментом для существования лаборатории. Работа не прерывалась, но... просто было непросто (смеется). Нам удалось получить поддержку руководства университета, а затем мы добились нового гранта на восемь миллионов. Так лаборатория продержалась первый критический год. Затем пошли все новые гранты, и до сих пор мы держим средний уровень финансирования в размере около 30 миллионов рублей в год. Большую роль в нашем выживании сыграли мои зарубежные связи, позволившие доставать некоторые редкие штаммы, клеточные культуры и другие реагенты.
— За время существования лаборатории удалось ли вам воспитать себе преемника — нового заведующего?
— Я не ставил задачи воспитывать преемника, поскольку уверен, что наука, в особенности фундаментальная, ведется лидерами со своими особыми интересами. Просто нужно давать развиваться научным интересам сотрудников. Работников своей лаборатории я всячески подталкиваю к развитию, многие из них пишут собственные гранты, кто-то их уже получил. Лаборатория выросла фактически с нуля: сначала я набирал студентов, и их работа начиналась с дипломов и курсовых. Я не считаю их преемниками — у каждого есть свои интересы в науке, иногда вовсе не совпадающие с моими. Всегда при развитии науки появляются некие ответвления и новые тематики, и это нормально. Здорово, что еще ни один человек из моей лаборатории не уехал за рубеж: всех в основном все устраивает, и нет нужды искать другие варианты.
— Какими грантами, патентами или стартапами может похвастаться ваш коллектив?
— В настоящий момент у нас есть несколько грантов по механизму транскрипции хроматина, есть по PARP и FACT. С окончания мегагранта нами получено три патента и еще по одному есть положительное решение: мы разработали методику тестирования веществ, влияющих на процесс старения, а также противоопухолевых препаратов. Это все сделано на основе биохимических методов, сейчас же мы работаем с использованием FRET.
В целом же я придерживаюсь точки зрения профессора Преображенского: «Каждый занимается своим делом»: конечно, получаем патенты, сотрудничаем с коммерческими компаниями, но сильно в практику не уходим, распределяя силы между фундаментальными и прикладными исследованиями.
— Когда вы уехали в Америку?
— Я уехал в 1991, ровно за месяц до развала СССР. В итоге в один момент я оказался в Америке совсем без гражданства.... Шучу! Конечно же, проблемы с документами решились быстро, но ситуация была интересная.
— Что заставило вас вернуться? Как много времени вы проводите в России теперь?
— Нельзя сказать «заставило»... Я всегда поддерживал контакт с Россией: были российские студенты и аспиранты, которые приезжали ко мне. Оставались тесные связи со своим родным вузом, Институтом молекулярной биологии и Институтом биологии гена. Мегагрант же показался мне интересной возможностью вернуть в Россию то, что я, в некотором роде, в свое время увез в США. Тем более что при таком повороте политики правительства в отношении науки появился реальный шанс что-то создать. Я понимал, что это будет непросто, однако ввязался в сумасшедшую конкуренцию за мегагрант и выиграл его.
А вот второй вопрос в отношении меня немного неподходящий, поскольку в силу семейных обстоятельств в России я бываю гораздо реже, чем хотел бы. Стоить спросить вот что: сколько времени я уделяю лаборатории в МГУ? Ответ — очень много. Как минимум каждую неделю мы проводим трехчасовые семинары по скайпу, я общаюсь с сотрудниками по отдельности, да и вообще всячески участвую в жизни лаборатории. У нас сильно развито взаимодействие внутри коллектива, а это требует много времени и сил. Хотя, на самом деле, спустя столько лет работа вошла в режим автоматизма и некоторые решения (например, касающиеся оборудования) уже и не требуют моего вмешательства. Народ у нас в этом плане ответственный.
— После долгого отсутствия вы вернулись в свою альма-матер... Сильно ли изменился облик МГУ с момента вашего переезда в Америку?
— Я иногда приезжал в Москву. Могу сказать, что в середине-конце девяностых ситуация в МГУ была очень грустной. Порой создавалось впечатление динозавра, который вот-вот вымрет. А потом в начале нового тысячелетия произошел заметный подъем практически во всех областях науки, да и вообще МГУ похорошел, почистил перышки — теперь Университет в очень неплохой форме. Приятно это осознавать, и даже в некоторой степени участвовать в его возрождении.
— Можете поделиться своими научными планами на будущее?
— Планы определяются людьми, которые работают в лаборатории. Будут развиваться два основных направления: структурная динамика хроматина в рамках эпигенетики и анализ различных процессов, участвующих в развитии рака. Это основные направления, однако мы не знаем, куда нас занесет через год или два (смеется). И у сотрудников, и у меня постоянно возникают новые идеи — наука и лаборатория продолжают развиваться.

 Источник  https://indicator.ru/article/2018/04/24/megagrant-studnickij/
Back to top