МЕГАГРАНТЫ

Лаборатория нано-биоинженерии

О лаборатории

Наименование проекта Наногетероструктуры, инструменты и диагностические системы новых поколений на основе гибридных материалов со свойствами переноса энергии.

Ссылка на официальный сайт

№ договора:
11.G34.31.0050

Наименование ВУЗа:
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ"

Области научных исследований:
Гибридные нано-био материалы со свойствами переноса энергии

Цель проекта:
Создать лабораторию Нано-Био Инженерии (LNBE), в которой совместить современнейшие разработки в области нано-биоинженерии, с инфраструктурой и опытом МИФИ в области изучения переноса энергии и сверхбыстрых процессов на наноуровне.

Основные задачи проекта:
1. Создать лабораторию мирового уровня в области гибридных нано-биоматериалов;
2. Исследовать процессы переноса энергии на наноуровне и использовать их в эффективном производстве био-топлива и в фотовольтаике;
3. Предложить новое поколение интегрированных диагностических систем на основе регистрирующих устройств для процессов переноса энергии.

Ведущий учёный

vu mini 50 

ФИО: Набиев Игорь Руфаилович

 

Ученые степень и звание:
доктор химических наук, профессор

Занимаемая должность:
Профессор 1-го класса, Директор лаборатории нанобиотехнологии, Faculty of Pharmacy and Faculty of Medicine, University of Reims Champagne-Ardenne, France

Области научных интересов:
Гибридные нано-био материалы со свойствами переноса энергии

Научное признание:
Имеет богатый опыт управления международными и национальными проектами в качестве координатора и главного исследователя (один из самых больших проектов - 7 -й Программы ЕС "Нанотехнологические инструменты для многофункциональной диагностики болезней и мониторинга лечения" (NAMDIATREAM)- недавно получил 12 000 000 евро на 4 года (01/07/2010-30/06/2014) и включает, в числе 22-х участников, таких партнеров, как Trinity College Dublin и Сentre for Research on Adaptive Nanostructures and Nanomachines (Ireland), Philips-University Marburg, Ecole Polytechnique Fédérale de Lausanne, Nikon SA, Becton Dickinson SA, Progenika Biopharma SA, Selective Antibodies SAS, и т.д.).

Директор платформы нанофлуоресцентной диагностики и мониторинга, и координатор усилия шести участников проекта с общим бюджетом свыше 4 000 000 евро.

Руководитель Европейской технологической платформы NAMDIATREAM "Полупроводниковые нанокристаллы" , руководитель ряда французских национальных проектов: “Создание высокоэффективных белковых микрочипов для анализа фосфопротеома и открытия противоопухолевых лекарств”, “Нанодиагностика микрометастаз” и “Нано-биогибридные материалы с фотовольтаичными свойствами”.

В рамках программы НАТО “Наука для мира” координирует проект "Микрочипы новых поколений" создающий методы сверхчувствительного обнаружения патогенных микроорганизмов с помощью флуоресцирующих нанокристаллов, функционирующих в формате Ферстеровского резонансного переноса энергии (Förster Resonance Energy Transfer - FRET).

Публикация Количество цитирований
Kulakovich, O., Strekal, N., Yaroshevich, A., Maskevich, S., Gaponenko, S., NABIEV, I., Woggon, U., Artemyev, M. (2002) Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett., 2, 1449-1452. 428
Sukhanova, A., Devy, J., Venteo, L., Kaplan, H., Artemyev, A., Oleinikov, V., Klinov, D., Pluot, M., Cohen, J.H.M., NABIEV, I. (2004) Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal Biochem., 324, 60-67. 219
Wargnier, R., Baranov, A., Maslov, V., Stsiapura, V., Artemyev, M., Pluot, M., Sukhanova, A., NABIEV, I. (2004) Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies. Nano Lett., 4, 451-457. 182
Baranov, A., Rakovich, Yu., Donegan, J., Perova, T., Moore, R., Talapin, D., Rogach, A., Masumoto, Y., NABIEV, I. (2003) Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots Phys. Rev. B, 68, 1653061. 153
NABIEV, I., Mitchell, S., Williams, Y., Kelleher, D., Moore, R., Gun'ko, Y.K., Byrne, S., Rakovich, Y.P., Donegan, J.F., Sukhanova, A., Conroy, J., Cottell, D., Gaponik, N., Rogach, A., Volkov, Y. (2007) Nonfunctionalized nanocrystals can exploit a cell's active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Letters, 7, 3452-3461. 151
Shemetov, A.A., NABIEV, I., Sukhanova, A. (2012) Molecular interaction of proteins and peptides with nanoparticles. ACS NANO6, 4585-4602. 145
Chumanov, G.D., Efremov, R.G., NABIEV, I. (1990) Surface-enhanced Raman-spectroscopy of biomolecules .1. Water-soluble proteins, dipeptides and amino-acids. J. Raman Spectrosc.21, 43-48. 117
NABIEV I., Morjani H., Manfait M. (1991) Selective analysis of antitumor drug-interaction with living cancer-cells as probed by surface-enhanced Raman-spectroscopy. Eur. Biophys. J., 19, 311-316. 109
Sukhanova, A., Venteo, L., Devy, J., Artemyev, M., Oleinikov, V., Pluot, M., NABIEV, I. (2002) Highly stable fluorescent nanocrystals as a novel class of labels for mmunohistochemical analysis of paraffin-embedded tissue sections. Lab. Invest.82, 1259-1262. 103
NABIEV, I.R., Savchenko, V.A., Efremov, E.S. (1983) Surface-enhanced Raman spectra of aromatic amino acids and proteins adsorbed by silver hydrosols. J. Raman Spectrosc., 14, 375-379. 87
Общее количество цитирований 10 лучших публикаций 1 694
Среднее количество цитирований каждой из 10 лучших публикаций. 169,4

 

Результаты исследований

  1. Bobrovsky, A., Mochalov, K., Oleinikov, V., Sukhanova, A., Prudnikau, A., Artemyev, M., Shibaev, V., Nabiev, I. (2012) Optically and electrically controlled circularly polarized emission from cholesteric liquid crystal materials doped with semiconductor quantum dots. Advanced Materials, 24, 6216-6222. IF=21.950.
  2. Vokhmintcev, K.V., Samokhvalov, P.S., Nabiev, I. (2016) Charge transfer and separation in photoexcited quantum dot-based systems. Nano Today, 11 (2), 189–211. IF=17.753.
  3. Rakovich, A., Donegan, J.F., Oleinikov, V.A., Molinari, M., Sukhanova, A., Nabiev, I., Rakovich, Yu.P. (2014) Linear and nonlinear optical effects induced by energy transfert from semiconductor nanoparticles to photosensitive biological systems. J. Photochem. Photobiol. C: Photochem. Rev., 20, 17–32. IF=15.325.
  4. Mochalov, K., Efimov, A., Bobrovsky, A., Agapov, I., Chistyakov, A., Oleinikov, V., Sukhanova, A., Nabiev, I. (2013) Combined scanning probe nanotomography and optical microspectroscopy: a correlative technique for 3D characterization of nanomaterials. ACS NANO, 7 (10), 8953-8962. IF=13.709.
  5. Shemetov, A., Nabiev, I., Sukhanova, A. (2012) Molecular interaction of proteins and peptides with nanoparticles. ACS NANO, 6 (6), 4585–4602. IF=13.709.
  6. Rakovich, T.Y., Mahfoud, O.K., Mohamed, B.M., Prina-Mello, A., Crosbie-Staunton, K., Van Den Broeck, T., De Kimpe, L., Sukhanova, A., Baty, D., Rakovich, A., Maier, S.A., Alves, F.,  Nauwelaers, F., Nabiev, I., Chames, P., Volkov, Y. (2014) Highly sensitive single domain antibody-quantum dot conjugates for detection of low expression levels of HER2 biomarker in lung and breast cancer cells. ACS NANO, 8 (6), 5682–5695. IF=13.709.
  7. Rakovich, A., Nabiev, I., Sukhanova, A., Lesnyak, V., Gaponik, N., Rakovich, Yu.P., Donegan, J.F. (2013) Large enhancement of nonlinear optical response in a hybrid nanobiomaterial consisting of bacteriorhodopsin and cadmium telluride quantum dots. ACS NANO, 7 (3), 2154–2160. IF=13.709.
  8. Montenegro, J.-M., Grazu, V., Sukhanova, A., Agarwal, S., de la Fuente, J.M., Nabiev, I., Greiner, A., Parak, W.J. (2013) Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. Adv. Drug. Del. Rev., 65 (5), 677-688. IF=13.660.
  9. Krivenkov, V., Goncharov, S., Samokhvalov, P., Sánchez-Iglesias, A., Grzelczak, M., Nabiev, I., Rakovich, Yu. (2019) Enhancement of biexciton emission due to long-range interaction of single quantum dots and gold nanorods in a thin-film hybrid nanostructure. The Journal of Physical Chemistry Letters, 10, 481–486. IF=8.709.
  10. Krivenkov, V., Goncharov, S., Nabiev, I., Rakovich, Yu.P. (2018) Induced transparency in plasmon–exciton nanostructures for sensing applications. Laser & Photonics Reviews, 13, 1800176. DOI: 10.1002/lpor.201800176. IF=8.529.
  11. Generalova, A.N., Oleinikov, V.A., Sukhanova, A., Artemyev, M.V., Zubov, V.P., Nabiev, I. (2013) Quantum dot-containing polymer particles with thermosensitive fluorescence. Biosensors and Bioelectronics, 39 (1), 187–193. IF=8.173.
  12. Linkov, P., Artemyev, M., Efimov, A., Nabiev, I. (2013) Comparative advantages and limitations of the basic metrology methods applied to characterization of nanomaterials. Nanoscale, 5, 8781-8798. IF=7.233.
  13. Melnikau, D., Savateeva, D, Lesnyak, V., Gaponik, N., Fernandez, Y.N., Vasilevskiy, M.I., Costa, M.F., Mochalov, K.E., Oleinikov, V., Rakovich, Y.P. (2013) Resonance energy transfer in self-organized organic/inorganic dendrite structures. Nanoscale, 5, 9317-9323. IF=7.233.
  14. Dovzhenko, D.S., Ryabchuk, S.V., Rakovich, Yu.P., Nabiev, I.R. (2018) Light–matter interaction in the strong coupling regime: configurations, conditions, applications. Nanoscale, 10, 3589–3605. IF=7.233.
  15. Zaitsev, S.Yu., Solovyeva D.O., Zaitsev, I.S. (2015) Multifunctional membranes based on photosensitive crown-ether derivatives with advanced properties. Advances in Colloid and Interface Science, 222, 755–764. IF=7.346.
  16. Zaitsev, S.Y., Solovyeva, D.O. (2015) Supramolecular nanostructures based on bacterial reaction center proteins and quantum dots. Advances in Colloid and Interface Science, 218, 34-47. IF=7.346.
  17. Zaitsev S.Yu., Solovyeva D.O., Nabiev, I. (2012) Thin films and assemblies of photosensitive membrane proteins and colloidal nanocrystals for engineering of hybrid materials with advanced properties. Advances in Colloid and Interface Science, 183–184, 14–29. IF=7.346.
  18. Brazhnik, K., Sokolova, Z., Baryshnikova, M., Bilan, R., Efimov, A., Nabiev, I., Sukhanova, A. (2015) Quantum dot-based lab-on-a-bead system for multiplexed detection of free and total prostate-specific antigens in clinical human serum samplesNanomedicine: NBM, 11 (5), 1065–1075. IF=6.500.
  19. Sukhanova, A., Even-Desrumeaux, K., Kisserli, A., Tabary, T., Reveil, B., Millot, J.M., Chames, P., Baty, D., Artemyev, M., Poly, S., Oleinikov, V.A., Pluot, M., Cohen, J.H.M., Nabiev, I. (2012) Oriented conjugates of single-domain antibodies and quantum dots: toward a new generation of ultrasmall diagnostic nanoprobes. Nanomedicine: NBM, 8, 516–525. IF=6.500.
  20. Hafian, H., Sukhanova, A., Turini, M., Chames, P., Baty, D., Pluot, M., Cohen, J.H.M., Nabiev, I., Millot, J.M. (2014) Multiphoton imaging of tumor biomarkers with conjugates of single-domain antibodies and quantum dots. Nanomedicine: NBM, 10 (8), 1701–1709. IF=6.500.
  21. Ushakova, E.V., Cherevkov, S., Volgina, D.-O. A., Zakharov, V.V., Komissarenko, F.E., Shcherbakov, A.A., Hogan, B.T., Baldycheva, A., Fedorov, A.V., Nabiev, I., Baranov, A.V. (2018) From colloidal CdSe quantum dots to microscale optically anisotropic supercrystals through bottom-up self-assembly. Journal of Materials Chemistry C, 6, 12904–12911 DOI: 10.1039/C8TC04780D. IF=5.976.
  22. Samokhvalov, P., Artemyev, M., Nabiev, I. (2013) Basic principles and current trends in colloidal synthesis of highly luminescent semiconductor nanocrystals. Chemistry - Eur. J., 19 (5), 1534-1546. IF=5.16.
  23. Oleinikov, V. A., Sukhanova, A., Generalova, A. N., Sizova, S. V., Mochalov, K. E., Chistyakov, A. A., Artemyev, M. V., Nabiev, I. (2013) Nanoprobes on the basis of fluorescent semiconductor nanocrystals for bioassays and biosensing. FEBS J., 280 (Suppl. 1), 275. IF=4.530.
  24. Lafont, F., Ayadi, N., Charlier, C., Weigel, P., Nabiev, I., Benhelli-Mokrani, H., Fleury, F. (2017) DNA-dependent protein kinase activity assessed by quantum dot–based microarray. FEBS J., 284, P.1.2-110. Doi:10.1111/febs.14174. IF=4.530.
  25. Akinfieva, O., Nabiev, I., Sukhanova, A. (2013) New directions in quantum dots-based flow cytometry detection of cancer serum markers and tumor cells. Crit. Rev. Oncol./Hematol., 86 (1), 1-14. IF=4.495.
  26. Bourguet, E., Brazhnik, K., Sukhanova, A., Moroy, G., Brassart-Pasco, S., Martin, A.-P., Villena, I., Bellon, G., Sapi, J., Nabiev, I. (2016) Design, synthesis, and use of MMP-2 inhibitor-conjugated quantum dots in functional biochemical assays. Bioconjugate Chemistry, 27 (4), 1067–1081. IF=4.485.
  27. Bilan, R., Fleury, F., Nabiev, I., Sukhanova, A. (2015) Quantum dot surface chemistry and functionalization for cell targeting and imaging. Bioconjugate Chemistry, 26 (4), 609–624. IF=4.485.
  28. Kuzishchin, Yu., Martynov, I., Dovzhenko, D., Kotkovskii, G., Chistyakov, A. (2015) Surface-assisted laser desorption/ionization of trinitrotoluene on porous silicon under ambient conditions. Journal of Physical Chemistry C, 119 (11), 6382–6388. IF=4.484.
  29. Krivenkov, V., Samokhvalov, P., Zvaigzne, M., Martynov, I., Chistyakov, A., Nabiev, I. (2018) Ligand-mediated photobrightening and photodarkening of CdSe/ZnS quantum dot ensembles. Journal of Physical Chemistry C, 122 (27), 15761–15771. IF=4.484.
  30. Renugopalakrishnan, V., Barbiellini, B., King, C., Molinari, M., Mochalov, K., Sukhanova, A., Nabiev, I., Fojan, P., Tuller, H., Chin, M., Somasundaran, P., Padrós, E., Ramakrishna, S. (2014) Engineering a robust photovoltaic device with quantum dots and bacteriorhodopsin. Journal of Physical Chemistry C, 118 (30), 16710–16717. IF=4.484.
  31. Nifontova, G., Ramos-Gomes, F., Baryshnikova, M., Alves, F., Nabiev, I., and Sukhanova, A. (2019) Cancer cell targeting with functionalized quantum dot–encoded polyelectrolyte microcapsules. Frontiers in Chemistry, 7:34. IF=4.155.
  32. Sukhanova, A., Poly, S., Bozrova, S., Lambert, E., Ewald, E., Molinari, M., Karaulov, A.V., and Nabiev, I. (2019) Nanoparticles with a specific size and surface charge promote disruption of the secondary structure and amyloid-like fibrillation of human insulin under physiological conditions. Frontiers in Chemistry, IF=4.155, in press.
  33. Solovyeva, D., Vaskan, I., Lukashev, E.P., Oleinikov, V.A., Efimov, A., Mochalov, K., Sukhanova, A., and Nabiev, I. (2019) An approach to fabrication of a high-performance bio-photoelectrodes for quantification and measurements of photocurrent generated by a single photosynthetic reaction center. Frontiers in Chemistry, IF=4.155, in press.
  34. Petrova, I., Konopsky, V., Nabiev, I., Sukhanova, A. (2019) Label-free flow multiplex biosensing via photonic crystal surface mode detection. Nature: Scientific Reports, IF=4.122, in press.
  35. Sukhanova, A., Melnikau, D., Nabiev, I. (2018) Magneto-optical activity of aqueous solutions of non-magnetic metal nanoparticles. Nature: Scientific Reports, IF=4.122, in press.
  36. Lafont, F., Ayadi, N., Charlier, C., Weigel, P., Nabiev, I., Benhelli-Mokrani, H, Fleury, F. (2018) Assessment of DNA-PKcs kinase activity by quantum dot–based microarray. Nature: Scientific Reports, 8, 10968. IF=4.122.
  37. Ramos-Gomes, F., Bode, J., Sukhanova, A., Bozrova, S. V., Saccomano, M., Mitkovski, M., Krueger, J. E., Wege, A. K., Stuehmer, W., Samokhvalov, P. S., Baty, D., Chames, P., Nabiev, I., Alves, F. (2018) Single- and two-photon imaging of human micrometastases and disseminated tumour cells with conjugates of nanobodies and quantum dots. Nature: Scientific Reports, 8, 4595. IF=4.122.
  38. Bilan, R., Ametzazurra, A., Brazhnik, K., Escorza, S., Fernández, D., Uríbarri, M., Nabiev, I., Sukhanova, A. (2017) Quantum-dot-based suspension microarray for multiplex detection of lung cancer markers: preclinical validation and comparison with the Luminex xMAP® system. Nature: Scientific Reports, 7, 44668. IF=4.122.
  39. Zaitsev, S.Yu., Lukashev, E.P., Solovyeva, D.O., Chistyakov, A.A., Oleinikov, V.A. (2014) Controlled influence of quantum dots on purple membranes at interfaces. Colloids and Surfaces B: Biointerfaces. 117, 248-251. IF=3.997.
  40. Sokolov, P.M., Zvaigzne, M.A., Krivenkov, V.A., Litvin, A.P., Baranov, A.V., Fedorov, A.V., Samokhvalov, P.S., Nabiev, I.R. (2019) Graphene–quantum dot hybrid nanostructures with controlled optical and photoelectric properties for solar cell applications. Russian Chemical Reviews, 88 (4), 370–386. IF=3.991.
  41. Zaitsev, S.Yu., Solovyeva, D.O., and Nabiev, I.R. (2014) Nanobiohybrid structures based on the organized films of photosensitive membrane proteins. Russian Chemical Reviews, 83 (1), 38-81. IF=3.991.
  42. Kotkovskiy, G.E., Kuzishchin, Y.A., Martynov, I.L., Chistyakov, A.A., Nabiev, I. (2012) The photophysics of porous silicon: technological and biomedical implications. PhysChemChemPhys, 14 (40), 13890-13902. IF=3.906.
  43. Dayneko, S., Tameev, A., Tedoradze, M., Martynov, I., Artemyev, M., Nabiev, I., Chistyakov, A. (2013) Hybrid heterostructures based on aromatic polyimide and semiconductor CdSe quantum dots for photovoltaic applications. Appl. Phys. Lett., 103, 063302. IF=3.495. PDF Copyright by the American Institute of Physics. This article may be downloaded for personal use only.
  44. Krivenkov, V., Samokhvalov, P., Solovyeva, D., Bilan, R., Chistyakov, A., Nabiev, I. (2015) Two-photon-induced Förster resonance energy transfer in a hybrid material engineered from quantum dots and bacteriorhodopsin. Optics Letters, 40, 1440-1443. IF=3.589.
  45. Dovzhenko, D., Mochalov, K., Vaskan, I., Kryukova, I., Rakovich, Y., Nabiev, I. (2019) Polariton-assisted splitting of broadband emission spectra of strongly coupled organic dye excitons in tunable optical microcavity. Optics Express, 27 (4), 4077–4089. IF=3.356.
  46. Prudnikau, A., Artemyev, M., Molinari, M., Troyon, M., Sukhanova, A., Nabiev, I., Baranov, A.V., Cherevkov, S.A., Fedorov, A.V. (2012) Chemical substitution of Cd ions by Hg in CdSe nanorods and nanodots: spectroscopic and stuructural examination. Materials Science and Engineering B., 177, 744–749. IF=3.316.
  47. Sukhanova, A., Bozrova, S., Sokolov, P., Berestovoy, M., Karaulov, A., Nabiev, I. (2018) Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Research Letters, 13:44. IF=3.125.
  48. Nifontova G., Zvaigzne, M., Baryshnikova, M., Korostylev, E., Ramos-Gomes, F. Alves, F., Nabiev, I., Sukhanova, A (2018) Next-generation theranostic agents based on polyelectrolyte microcapsules encoded with semiconductor nanocrystals: Development and functional characterization. Nanoscale Research Letters, 13:30. IF=3.125.
  49. Nifontova, G., Efimov, A., Agapova, O., Agapov, I., Nabiev, I., Sukhanova, A. (2019) Bioimaging tools based on polyelectrolyte microcapsules encoded with fluorescent semiconductor nanoparticles: Design and characterization of the fluorescent properties. Nanoscale Research Letters, 14:29. IF=3.125.
  50. Hardzei, M., Artemyev, M., Molinari, M.,Sukhanova, A., Oleinikov, V.A., Troyon, M., Nabiev, I. (2012) Comparative efficiency of energy transfer from CdSe–ZnS quantum dots or nanorods to organic dye molecules. ChemPhysChem, 13, 330–335. IF=2.947.
  51. Bilan, R.S., Krivenkov, V.A., Berestovoy, M.A., Efimov, A.E., Agapov, I.I., Samokhvalov, P.S., Nabiev, I., Sukhanova, A. (2017) Engineering of optically encoded microbeads with FRET-free spatially separated quantum dot layers for multiplexed assays. ChemPhysChem, 18 (8), 970–979. IF=2.947.
  52. Mochalov, K.E., Chistyakov, A.A., Solvyeva, D.O., Mezin, A.V., Oleinikov, V.A., Molinari, M., Agapov, I.I., Nabiev, I., Efimov, A.E. (2017) An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomographyUltramicroscopy, 182, 118-123. IF=2.929.
  53. Bilan, R., Nabiev, I., Sukhanova, A. (2016) Quantum dot–based nanotools for bioimaging, diagnostics, and drug delivery. ChemBioChem, 17 (22), 2103–2114. IF=2.774.
  54. Dayneko, S., Linkov, P., Martynov, I., Tameev, A., Tedoradze, M., Samokhvalov, P., Nabiev, I., Chistyakov, A. (2016) Photoconductivity of composites based on CdSe quantum dots and low-band-gap polymers. Physica E: Low-dimensional Systems and Nanostructures, 79, 206–211. IF=2.399.
  55. Krivenkov, V.A., Solovyeva, D.O., Samokhvalov, P.S., Grinevich, R.S., Brazhnik, K.I., Kotkovskii, G.E., Lukashev, E.P., Chistyakov, A.A. (2014) Resonance energy transfer in nano-bio hybrid structures can be modulated by UV laser irradiation. Laser Phys. Lett., 11, 115601. IF=2.240.
  56. Bouchonville, N., Le Cigne, A., Sukhanova, A., Molinari, M., Nabiev, I. (2013) Nano-biophotonic hybrid materials with controlled FRET efficiency engineered from quantum dots and bacteriorhodopsin. Laser Phys. Lett., 10, 085901. IF=2.240.
  57. Rousserie, G., Grinevich, R., Brazhnik, K., Even-Desrumeaux, K., Reveil, B., Tabary, T., Chames, P., Baty, D., Cohen, J.H.M., Nabiev, I., Sukhanova, A. (2015) Detection of carcinoembryonic antigen using single-domain or full-size antibodies stained with the quantum dot conjugatesAnal. Biochem., 478, 26-32. IF=2.275.
  58. Bugakov, M., Boiko, N., Linkov, P., Samokhvalov, P., Efimov, A., Abramchuk, S., Shibaev, V. (2018) Fluorescent thermostable crosslinked poly(dodecylmethacrylate) composites based on porous polyethylene and CdSe/ZnS quantum dots. Polymer International, 67 (9), 1275–1281. IF=2.070.
  59. Bobrovsky, A., Shibaev, V., Elyashevitch, G., Mochalov, K., Oleynikov, V. (2015) Polyethylene-based composites containing high concentration of quantum dots. Colloid and Polymer Science, 293 (5), 1545–1551. IF=1.967.
  60. Sukhanova, A., Poly, S., Shemetov, A., Bronstein, I., Nabiev, I. (2012) Implications of protein structure instability: From physiological to pathological secondary structure. Biopolymers, 97, 577-588. IF=1.908.
  61. Mochalov, K.E., Vaskan, I.S., Dovzhenko, D.S., Rakovich, Yu.P., Nabiev, I.R. (2018) A versatile tunable microcavity for investigation of light–matter interaction. Review of Scientific Instruments. 89, 053105. IF=1.515.
  62. Efimov, A.E., Agapov, I.I., Agapova, O.I., Oleinikov, V.A., Mezin, A.V., Molinari, M., Nabiev, I., Mochalov, K.E. (2017) A novel design of a scanning probe microscope integrated with an ultramicrotome for serial block-face nanotomography. Review of Scientific Instruments, 88, 032701. IF=1.515.
  63. Zaitsev, S.Y., Shaposhnikov, M.N., Solovyeva, D.O., Zaitsev, I.S., Möbius, D. (2015) Cell staining by photo-activated dye and its conjugate with chitosan. Cell Biochemistry and Biophysics, 71 (3), 1475–1481. IF=1.455.
  64. Linkov, P.A., Vokhmintcev, K.V., Samokhvalov, P.S., Laronze-Cochard, M., Sapi, J., Nabiev, I.R. (2018) Effect of the semiconductor quantum dot shell structure on fluorescence quenching by acridine ligand. JETP Letters, 107 (4), 233–237. IF=1.363.
  65. Dovzhenko, D.S., Vaskan, I.S., Mochalov, K.E., Rakovich, Yu.P., Nabiev, I.R. (2019) Spectral and spatial characteristics of the electromagnetic modes in a tunable optical microcavity cell for studying hybrid light–matter states. JETP Letters, 109 (1), 12–17. IF=1.363.
  66. Linkov, P., Samokhvalov, P., Vokhmintcev, K., Zvaigzne, M., Krivenkov, V., Nabiev, I. (2019) Optical properties of quantum dots with a core–multishell structure. JETP Letters, 109 (2), 112–115. IF=1.363.
  67. Zaitsev, S.Yu., Shaposhnikov, M.N., Solovyeva, D.O., Zaitsev, I.S., Möbius, D. (2013) Novel precursors of fluorescent dyes. 1. Interaction of the dyes with model phospholipid in monolayers. Cell Biochemistry and Biophysics, 67 (3), 1365-1370. IF=1.32.
  68. Melnikau, D., Hendel, T., Linkov, P.A., Samokhvalov, P.S., Nabiev, I.R., Rakovich, Yu.P. (2018) Energy transfer between single semiconductor quantum dots and organic dye molecules. Zeitschrift für Physikalische Chemie, 232 (9–11), 1513–1526. IF=1.144.

105. Самохвалов, П.С., Володин, Д.О., Бозрова, С.В., Довженко, Д.С., Звайгзне, М.А., Линьков, П.А., Нифонтова, Г.О., Петрова, И.О., Суханова, А.В., Набиев И.Р. (2019) Преобразование полупроводниковых наночастиц в плазмонные материалы путем направленной замены органических лигандов, связанных с их поверхностью. Письма в ЖТФ, 45 (7), 11–14.

104. Мoчалов, К.Е., Соловьева, Д.О., Васкан, И.С., Набиев, И.Р. (2019) Сканирующая ближнепольная оптическая наноспектрофотометрия: метод наномасштабного измерения спектров поглощения единичных нанообъектов. Письма в ЖТФ, 45 (4), 17–22.

103. Sukhanova A., Ramos-Gomes F., Alves F., Chames P., Baty D., Nabiev I. (2018) Advanced nanotools for imaging of solid tumors and circulating and disseminated cancer cells. Optics and Spectroscopy, 125 (5), 703–707.

102. Goncharov S.A., Krivenkov V.A., Samokhvalov P.S., Nabiev I., Rakovich Y.P. (2018) Photoluminescence properties of thin-film nanohybrid material based on quantum dots and gold nanorods. Optics and Spectroscopy, 125 (5), 726–730.

101. Krivenkov V.A., Samokhvalov P.S., Chistyakov A.A., Nabiev I. (2018) Quantum dots improve photovoltaic properties of purple membranes under near-infrared excitation. Optics and Spectroscopy, 125 (5), 747–750.

100. Onishchuk D.A., Pavlyuk A.S., Parfenov P.S., Litvin A.P., Nabiev I.R. (2018) Near infrared LED based on PbS nanocrystals. Optics and Spectroscopy, 125 (5), 751–755.

99. Kuzishchin Y.A., Martynov I.L., Osipov E.V., Samokhvalov P.S., Chistyakov A.A., Nabiev I.R. (2018) Optimization of excitation and detection modes to detect ultra-small amounts of semiconductor quantum dots based on cadmium selenide. Optics and Spectroscopy, 125 (5), 760–764.

98. Kuzishchin, Y.A., Martynov, I.L., Osipov, E.V., Samokhvalov, P.S., Chistyakov, A.A., Nabiev, I.R. (2018) Comparison of fluorescence excitation modes for CdSe semi-conductor quantum dots used in medical research. Bulletin of RSMU, 4. DOI: 10.24075/brsmu.2018.050.

97. Petrova, I.O., Konopsky, V.N., Sukhanova, A.V., Nabiev, I.R. (2018) Multiparametric detection of bacterial contamination based on the photonic crystal surface mode detection. Bulletin of RSMU, 4. DOI: 10.24075/brsmu.2018.047.

96. Volgina, D.A., Stepanidenko, E.A., Kormilina, T.K., Cherevkov, S.A., Dubavik, A., Baranov, M.A., Litvin, A.P., Fedorov, A.V., Baranov, A.V., Takai, K., Samokhvalov, P.S., Nabiev, I.R., Ushakova, E.V. (2018) A study of the optical properties of CdZnSe/ZnS-quantum dot–Au-nanoparticle complexes. Optics and Spectroscopy, 124 (4), 494–500. IF=0.644.

95. Krivenkov, V.A., Samokhvalov, P.S., Chistyakov, A.A., Nabiev, I. (2018) Laser tuning of resonance energy transfer efficiency in a quantum dot–bacteriorhodopsin nano–bio hybrid material. In.: Andrews, D.L., Bain, A.J., Nunzi, J.-M., Ostendorf, A., eds. Nanophotonics VII. Proc. of SPIE, 10672, 106720Z. doi: 10.1117/12.2306669

94. Nabiev, I.R. (2018) Quantum dot conjugates in functional imaging and highly sensitive biochemical assays. KnE Energy & Physics, 287–291. DOI 10.18502/ken.v3i2.1824

93. Samokhvalov, P.S., Linkov, P.A., Zvaigzne, M.A., Kosmynceva, A.V., Petrova, I.O., Krivenkov, V.A., Sukhanova, A.V., Nabiev, I.R. (2018) Optical properties of core–multishell quantum dots. KnE Energy & Physics, 449–455. DOI 10.18502/ken.v3i2.1850

92. Zvaigzne, M.A., Martynov, I.L., Voronin, V.S., Bozrova, S.V., Vokhmincev, K.V., Goncharov, S.A., Dovzhenko, D.S., Korenkova, A.V., Samokhvalov, P.S., Nabiev, I.R., Chistyakov, A.A. (2018) Fine-tuning of silica coating procedure for preparation of biocompatible and bright PbS/SiO2 QDs. KnE Energy & Physics, 578–582. DOI 10.18502/ken.v3i2.1868

91. Vokhmintcev, K.V., Linkov, P.A., Samokhvalov, P.S., Nabiev, I.R. (2018) Two-stage ZnS shell coating on the CuInS2 quantum dots for their effective solubilization. KnE Energy & Physics, 535–540. DOI 10.18502/ken.v3i2.1862

90. Linkov, P.A., Vokhmintcev, K.V., Samokhvalov, P.S., Laronze-Cochard, M., Sapi, J., Nabiev, I.R. (2018) The effect of quantum dot shell structure on fluorescence quenching by acridine ligand. KnE Energy & Physics, 194–201. DOI 10.18502/ken.v3i2.1813

89. Bozrova S.V., Baryshnikova M.A., Sokolova, Z.A., Nabiev, I.R., Sukhanova, A.V. (2018) In vitro cytotoxicity of CdSe/ZnS quantum dots and their interaction with biological systems. KnE Energy & Physics, 58–63. DOI 10.18502/ken.v3i2.1792

88. Nifontova, G.O., Sukhanova, A.V., Samokhvalov, P.S., Nabiev, I.R. (2018) Efficient encoding of matrix microparticles with nanocrystals for fluorescent polyelectrolyte microcapsules development. KnE Energy & Physics, 305–310. DOI 10.18502/ken.v3i2.1827

87. Nifontova, G.O., Baryshnikova M.B., Bozrova S.V., Sokolova, Z.A., Nabiev, I.R., Sukhanova, A.V. (2018) Cytotoxicity of polyelectrolyte microcapsules encoded with semiconductor nanocrystals. KnE Energy & Physics, 299–304. DOI 10.18502/ken.v3i2.1826

86. Dovzhenko, D.S., Chistyakov, A.A., Nabiev, I.R. (2018) Modeling and optimization of the porous silicon photonic structures. KnE Energy & Physics, 75–81. DOI 10.18502/ken.v3i2.1795

85. Dovzhenko, D.S., Chistyakov, A.A., Nabiev, I.R. (2018) Porous silicon photonic crystal as a substrate for high efficiency biosensing. KnE Energy & Physics, 69–74. DOI 10.18502/ken.v3i2.1794

84. Krivenkov, V.A., Samokhvalov, P.S., Chistyakov, A.A., Nabiev, I.R. (2018) Laser irradiation as a tool to control the resonance energy transfer in bacteriorhodopsin–quantum dot bio–nano hybrid material. KnE Energy & Physics, 168–174. DOI 10.18502/ken.v3i2.1809

83. Kosmyntseva A.V., Nabiev I.R., Rakovich Yu. P. (2017) Hybrid states of biomolecules in strong-coupling regime. Nanotechnologies in Russia, 12 (7–8), 327–337.

82. Mochalov, K., Bobrovsky, A., Solovyeva, D., Samokhvalov, P., Nabiev, I., Oleinikov, V. (2017) Microstructure and optical properties of composites consisting of nanoporous stretched polypropylene doped with liquid crystals and quantum dots at a high concentration. Orient. J. Chem. 32 (6), 2863-2872.

81. Dovzhenko, D., Terekhin, V., Vokhmintcev, K., Sukhanova, A., and  Nabiev, I. (2017) Improvement of antigen detection efficiency with the use of two-dimensional photonic crystal as a substrate. Journal of Physics: Conference Series, 784, 012018.

80. Nabiev, I. (2017) Quantum dot-based hybrid nanostructures and energy transfer on the nanoscale for single- and multi-photon imaging and cancer diagnostics. Journal of Physics: Conference Series, 784, 012041.

79. Berestovoy, M.A., Bilan, R.S., Krivenkov, V.A., Nabiev, I. and Sukhanova, A. (2017) Use of semiconductor nanocrystals to encode microbeads for multiplexed analysis of biological samples. Journal of Physics: Conference Series, 784, 012012.

78. Bozrova, S.V., Baryshnikova, M.A., Nabiev, I. and Sukhanova, A. (2017) Semiconductor quantum dot toxicity in a mouse in vivo model. Journal of Physics: Conference Series, 784, 012013.

77. Glukhov, S., Berestovoy, M., Chames, P., Baty, D., Nabiev, I. and Sukhanova, A. (2017) Quantification and imaging of HER2 protein using nanocrystals conjugated with single-domain antibodies. Journal of Physics: Conference Series, 784, 012016.

76. Terekhin, V. (2017) Synthesis of polystyrene core/SiO2 shell composite particles and fabrication of SiO2 capsules out of them. Journal of Physics: Conference Series, 784, 012006.

75. Linkov, P., Vokhmintcev, K.V., Samokhvalov, P.S. and Nabiev, I. (2017) Ultrasmall quantum dots: A tool for in vitro and in vivo fluorescence imaging. Journal of Physics: Conference Series, 784, 012033.

74. Vokhmintcev, K.V., Guhrenz, C., Gaponik, N., Nabiev, I. and Samokhvalov, P.S. (2017) Quenching of quantum dots luminescence under light irradiation and its influence on the biological application. Journal of Physics: Conference Series, 012014.

73. Nabiev I. (2017) Nanostructures based on quantum dots for application in promising methods of single- and multiphoton imaging and diagnostics. Optics and Spectroscopy, 122 (1), 1–7. IF=0.644.

72. Linkov P.A., Vokhmintsev K.V., Samokhvalov P.S, Nabiev I.R. (2017) Ultrasmall quantum dots for fluorescent bioimaging in vivo and in vitro. Optics and Spectroscopy, 122 (1), 8–11. IF=0.644.

71. Dayneko S.V., Samokhvalov P.S., Lypenko D., Nosova G.I., Berezin I.A., Yakimansky A.V., Chistyakov A.A., Nabiev I. (2017) A highly efficient white-light-emitting diode based on two-component polyfluorene/quantum dot composite. Optics and Spectroscopy, 122 (1), 12–15. IF=0.644.

70. Oleinikov V.A., Lukashev E.P., Zaitsev, S.Yu., Chistyakov A.A., Solovyeva D.O., Mochalov K.E., Nabiev I. (2017) The effect of plasmon silver and exiton semiconductor nanoparticles on the bacteriorhodopsin photocycle in Halobacterium salinarum membranes. Optics and Spectroscopy, 122 (1), 30–35. IF=0.644.

69. Krivenkov V.A., Samokhvalov P.S., Bilan R.S., Chistyakov A.A., Nabiev I. (2017) Resonant transfer of one- and two-photon excitations in quantum dot–bacteriorhodopsin complexes. Optics and Spectroscopy, 122 (1), 36–41. IF=0.644.

68. Zvaigzne M.A., Martynov I.L., Krivenkov V.A., Samokhvalov P.S., Nabiev I. (2017) Influence of the quantum dot/polymethylmethacrylate composite preparation method on the stability of its optical properties under laser radiation. Optics and Spectroscopy, 122 (1), 69–73. IF=0.644.

67. Osipov E.V., Martynov I.L., Dovzhenko D.S., Ananyev P.S., Kotkovskii G.E., Chistyakov A.A. (2017) Silicon photonic structures with embedded polymers for novel sensing methods. Optics and Spectroscopy, 122 (1), 74–78. IF=0.644.

66. Dovzhenko D.S., Martynov I.L., Kryukova I.S., Chistyakov A.A., Nabiev I. (2017) Modeling of the optical properties of porous silicon photonic crystals in the visible spectral range. Optics and Spectroscopy, 122 (1), 79–82. IF=0.644.

65. Zvaigzne, M.A., Martynov, I.L., Samokhvalov, P.S., Nabiev, I.R. (2016) Fabrication of composite materials from semiconductor quantum dots and organic polymers for optoelectronics and biomedicine: role of surface ligands. Russian Chemical Bulletin, 65 (11), 2568–2577.

64. Oleinikov V.A., Mochalov K.E., Solovyeva D.O., Chistyakov A.A., Lukashev E.P., Nabiev I. (2016) The effect of silver nanoparticles on the photocycle of bacteriorhodopsin of purple membranes of Halobacterium salinarum. Optics and Spectroscopy, 121 (2), 210–219. IF=0.644.

63. Savinov S.A., Mityagin Yu.A., Chistyakov A.A., Kozlovsky K.I., Kuzishchin Yu.A., Krivenkov V.A., Egorkin V.I., Kazakov I.P. (2015) A Study of Emission Power and Spectrum of LT-GaAs Based THz Photoconductive Antennas, Physics Procedia, 73, 54–58.doi 10.1016/j.phpro.2015.09.121

62. Efimov, A.E., Bobrovsky, A.Yu., Agapov, I.I., Agapova, O.I., Oleinikov, V.A., Nabiev, I.R., Mochalov, K.E. (2016) Scanning near-field optical nanotomography: A new method of multiparametric 3D investigation of nanostructural materials. Technical Physics Letters, 42(2), 171–174.

61. Dovzhenko, D.S., Martynov, I.L., Samokhvalov, P.S., Mochalov, K.E., Chistyakov, A.A., Nabiev, I. (2016) Modulation of quantum dot photoluminescence in porous silicon photonic crystals as a function of the depth of their penetration. In: D. Gerace, G. Lozano, C. Monat, S.G. Romanov, eds. Photonic Crystal Materials and Devices XII. Proceedings of SPIE, 9885, 988507.

60. Vokhmintcev, K.V., Nabiev, I., Samokhvalov, P.S. (2016) Drastic difference in luminescence stability between amine- and thiol-capped quantum dots treated with CO2. In: D.L. Andrews, J.-M. Nunzi, A. Ostendorf, eds. Nanophotonics VI. Proceedings of SPIE, 9884, 98841U.

59. Krivenkov, V., Tretyachenko, A., Samokhvalov, P.S., Chistyakov, A.A., Nabiev, I. (2016) Controllable photo-brightening/photo-darkening of semiconductor quantum dots under laser irradiation. In: D.L. Andrews, J.-M. Nunzi, A. Ostendorf, eds. Nanophotonics VI. Proceedings of SPIE, 9884, 98843L.

58. Dayneko, S., Nabiev, I. (2015) The potential of lasing in quantum dots for sensing and diagnostic applications. Biomedical Engineering and Computational Technologies (SIBIRCON), 2015 International Conference. IEEE Conference Publications, 122–123. DOI: 10.1109/SIBIRCON.2015.7361865.

57. Sukhanova, A., Millot, J.-M., Pluot, M., Cohen, J.H.M., Nabiev, I., Even-Desrumeaux, K., Chames, P., Baty, D. (2015) Diagnostic nanoprobes based on the conjugates of quantum dots and single-domain antibodies for cancer biomarkers detection in immunohistochemistry and flow cytometry. Biomedical Engineering and Computational Technologies (SIBIRCON), 2015 International Conference. IEEE Conference Publications, 113–118. DOI: 10.1109/SIBIRCON.2015.7361863.

56. Sukhanova, A., Hafian, H., Pluot, M., Cohen, J.H.M., Millot, J.-M., Nabiev, I., Turini, M., Chames, P., Baty, D. (2015) Multiphoton imaging of tumor biomarkers in situ using highly oriented conjugates of single-domain antibodies and quantum dots. Biomedical Engineering and Computational Technologies (SIBIRCON), 2015 International Conference. IEEE Conference Publications, 119–121, DOI: 10.1109/SIBIRCON.2015.7361864.

55. Aleksandrova, E.L., Svetlichnyi, V.M., Matyushina, N.V., Myagkova, L.A., Daineko, S.V., Martynov, I.L., Tameev, A.R., (2015) Luminescence-kinetic spectroscopy of compound complexes of polyphenylquinolines. Semiconductors, 49 (7) 959–961.

54. Nabiev, I. (2015) Nano-bio hybrid materials for a new generation of high-throughput diagnostic systems. Physics Procedia, 73, 95–99.

53. Bilan, R., Brazhnik, K., Chames, P., Baty, D., Nabiev, I., Sukhanova, A. (2015) Oriented conjugates of single-domain antibodies and fluorescent quantum dots for highly sensitive detection of tumor-associated biomarkers in cells and tissues. Physics Procedia, 73, 228–234.

52. Brazhnik, K., Sokolova, Z., Baryshnikova, M., Bilan, R., Nabiev, I., Sukhanova, A. (2015) Multiplexed analysis of serum breast and ovarian cancer markers by means of suspension bead–quantum dot microarrays. Physics Procedia, 73, 235–240.

51. Dovzhenko, D., Osipov, E., Martynov, I., Linkov, P., Chistyakov, A. (2015) Enhancement of spontaneous emission from CdSe/CdS/ZnS quantum dots at the edge of the photonic band gap in a porous silicon Bragg mirror. Physics Procedia, 73, 126–130.

50. Efimov, A., Agapova, O., Mochalov, K., Agapov, I. (2015) Three-dimensional analysis of nanomaterials by scanning probe nanotomography. Physics Procedia, 73, 173–176.

49. Krivenkov, V., Linkov, P., Solovyeva, D., Bilan, R., Chistyakov, A., Nabiev, I. (2015) Energy transfer processes under one- and two-photon excitation of nano-biohybrid structures based on semiconductor quantum dots and purple membranes. Physics Procedia, 73, 143–149.

48. Kuzishchin, Yu., Dovzhenko, D., Martynov, I., Kotkovskii, G., Chistyakov, A. (2015) Dissociation of trinitrotoluene on the surface of porous silicon under laser irradiation. Physics Procedia, 73, 159–162.

47. Linkov, P., Laronze-Cochardc, M., Sapic, J., Sidorov, L., Nabiev, I. (2015) Multifunctional nanoprobes for cancer cell targeting, imaging and anticancer drug delivery. Physics Procedia, 73, 216–220.

46. Martynov, I., Kuzishchin, Yu., Dovzhenko, D., Kotkovskii, G., Chistyakov, A. (2015) Ionization of the nitroaromatic compounds in an ion mobility spectrometer with an ion source based on porous silicon under laser irradiation. Physics Procedia, 73, 163–167.

45. Mochalov, K., Efimov, A., Oleinikov, V., Nabiev, I. (2015) High-resolution scanning near-field optical nanotomography: A technique for 3D multimodal nanoscale characterization of nano-biophotonic materials. Physics Procedia, 73, 168–172.

44. Zvaigzne, M., Martynov, I., Samokhvalov, P., Mochalov, K., Chistyakov, A. (2015) Influence of surface ligands on the luminescent properties of cadmium selenide quantum dots in a polymethylmethacrylate matrix. Physics Procedia, 73, 150–155.

43. Dovzhenko, D., Osipov, E., Martynov, I., Linkov, P. (2015) Spatial and spectral properties of CdSe/CdS/ZnS quantum dots luminescence in one-dimensional photonic structures based on porous silicon. Proceedings of International Conference NANOMEETING 2015: Physics, Chemistry and Applications of Nanostructures – Reviews and Short Notes, O-11, 144-147.

42. Nabiev, I., Sukhanova, A. (2015) What happens when nanotechnology meets biology: breakthrough applications are accompanied with unexpected hazards Proceedings of International Conference NANOMEETING 2015: Physics, Chemistry and Applications of Nanostructures – Reviews and Short Notes, O-25, 447-450.

41. Krivenkov, V., Chistyakov, A., Samokhvalov, P., Solovyeva, D., Bilan, R. (2015) Förster resonance energy transfer under one- and two-photon excitation in nano-bio hybrid complexes forming from quantum dots and bacteriorhodopsin. Proceedings of International Conference NANOMEETING 2015: Physics, Chemistry and Applications of Nanostructures – Reviews and Short Notes, O-28, 461-464.

40. Sukhanova, A., Nabiev, I., Hafian, H., Pluot, M., Cohen, J.H.M., Millot, J.-M., Bilan, R., Brazhnik, K., Baryshnikova, M., Sokolova, Z., Chames, P., Baty, D. (2015) Single-photon and two-photon tumor imaging and diagnosis using oriented conjugates of single-domain antibodies and quantum dots. Proceedings of International Conference NANOMEETING 2015: Physics, Chemistry and Applications of Nanostructures – Reviews and Short Notes, O-31, 495-498.

39. Dayneko, S., Samokhvalov, P., Martynov, I., Chistyakov. A., Tameev, A., Tedoradze, M. (2015) Photovoltaic structures based on organic semiconductors and CdSe quantum dots. Proceedings of International Conference NANOMEETING 2015: Physics, Chemistry and Applications of Nanostructures – Reviews and Short Notes, O-62, 520-523.

38. Sukhanova, A., Even-Desrumeaux, K., Millot, J.-M., Chames, P., Baty, D., Pluot, M., Cohen, J.H.M., Nabiev, I. (2016) Nanosized fluorescent diagnostic probes consisting of single-domain antibodies conjugated with quantum dots. Materials Today: Proceedings, 3, 518–522.

37. Sukhanova, A., Hafian, H., Turini, M., Chames, P., Baty, D., Pluot, M., Cohen, J.H.M., Millot, J.-M., Nabiev, I. (2016) Multiphoton imaging of tumor biomarkers in situ using singledomain antibodies conjugated with quantum dots in a set orientation. Materials Today: Proceedings, 3, 523–526.

36. Linkov, P., Krivenkov, V., Samokhvalov, P., Nabiev, I. (2016) High quantum yield CdSe/ZnS/CdS/ZnS multishell quantum dots for biosensing and optoelectronic applications. Materials Today: Proceedings, 3, 104–108.

35. Dayneko, S., Lypenko, D., Sannikova, N., Linkov, P., Tameev, A., Nikitenko, V., Samokhvalov, P., Chistyakov, A. (2016) Application of CdSe/ZnS/CdS/ZnS core–multishell quantum dots to modern OLED technology. Materials Today: Proceedings, 3, 211–215.

34. Dovzhenko, D., Osipov, E., Martynov, I., Samokhvalov, P., Eremin, I., Kotkovskii, G., Chistyakov, A. (2016) Porous silicon microcavity modulates the photoluminescence spectra of organic polymers and quantum dots. Materials Today: Proceedings, 3, 485–490.

33. Krivenkov, V., Linkov, P., Solovyeva, D., Bilan, R., Chistyakov, A., Nabiev, I. (2016) Two-photon-induced Förster resonance energy transfer in a quantum dot–bacteriorhodopsin hybrid material. Materials Today: Proceedings, 3, A1–A5.

32. Mochalov, K., Solvyeva, D., Chistyakov, A., Zimka, B., Lukashev, E., Nabiev, I., Oleinikov, V. (2016) Raman and SERS spectroscopy of D96N mutant bacteriorhodopsin. Materials Today: Proceedings, 3, 497–501.

31. Mochalov, K, Solvyeva, D., Chistyakov, A., Zimka, B., Lukashev, E., Nabiev, I., Oleinikov, V. (2016) Silver nanoparticles strongly affect the properties of bacteriorhodopsin, a photosensitive protein of Halobacterium salinarum purple membranes. Materials Today: Proceedings, 3, 502–506.

30. Sizova, S., Generalova, A., Tretyak, M., Mochalov, K., Samokhvalov, P., Nabiev, I., Oleinikov, V. (2016) Submicron QDs-containing particles as nano-thermosensors. Materials Today: Proceedings, 3, 617–621.

29. Grinevich, R., Rousserie, G., Brazhnik, K., Even-Desrumeaux, R., Reveil, B., Tabary, T., Chames, P., Baty, D., Cohen, J.H.M., Nabiev, I., Sukhanova, A. (2014) Detection of carcinoembryonic antigen on colon cancer cells using single-domain antibodies and quantum dots. Acta Naturae, спецвыпуск: Тезисы конференции "Наука будущего", С.-Петербург, 17-20 сентября 2014 г., 76.

28. Krivenkov, V.A., Samokhvalov, P.S., Linkov, P.A., Prokhorov, S.D., Martynov, I.L., Chistyakov, A.A., Nabiev, I. (2015) Effects of surface ligands and solvents on quantum dot photostability under pulsed UV laser irradiation. Quantum Optics and Quantum Information Transfer and Processing. Proceedings of SPIE, 9505, 95050U (May 7, 2015). doi:10.1117/12.2179240.

27. Bobrovsky, A., Samokhvalov, P., Shibaev, V. (2014) An effective method for preparation of stable LC composites with high concentration of quantum dots. Advanced Optical Materials. 2, 1167–1172.

26. Dayneko, S., Lypenko, D., Linkov, P., Tameev, A., Martynov, I., Samokhvalov, P., Chistyakov, A. (2014) Effect of surface ligands on the performance of organic light-emitting diodes containing quantum dots. Proc. of SPIE 9270, Optoelectronic Devices and Integration V, 927009 (October 24, 2014).

25. Krivenkov, V.A., Solovyeva, D.O., Samokhvalov, P.S., Brazhnik, K.I., Kotkovskiy, G.E., Chistyakov, A.A., Lukashev, E.P., Nabiev, I.R. (2014) Photoinduced modification of quantum dot optical properties affects bacteriorhodopsin photocycle in a (quantum dot)–bacteriorhodopsin hybrid material. Journal of Physics: Conference Series. 541, 012045.

24.   Brazhnik, K., Nabiev, I., Sukhanova, A. (2014) Oriented conjugation of single-domain antibodies and quantum dots. Methods in Molecular Biology, 1199, 129-140.

23.   Brazhnik, K., Nabiev, I., Sukhanova, A. (2014) Advanced procedure for oriented conjugation of full-size antibodies with quantum dots. Methods in Molecular Biology, 1199, 55-66.

22. Krivenkov, V.A., Samokhvalov, P.S., Linkov, P.A., Solovyeva, D.O., Kotkovskiy, G.E., Chistyakov, A.A., Nabiev, I.R. (2014) Surface ligands affect photoinduced degradation of the quanyum dots optical performance. In: D.L. Andrews, J.-M. Nunzi, A. Ostendorf, eds., Nanophotonics V. Proc. of SPIE, 9126, 91263N-1—91263N-8.

21. Dovzhenko, D.S., Martynov, I.L., Samokhvalov, P.S., Eremin I.S., Kotkovskiy, G.E., Sipailo, I.P., Chistyakov, A.A. (2014) Photoluminescence of CdSe/ZnS quantum dots in a porous silicon microcavity. In: D.L. Andrews, J.-M. Nunzi, A. Ostendorf, eds., Nanophotonics V. Proc. of SPIE, 9126, 91263O-1—91263O-7.

20. Brazhnik, K., Grinevich, R., Efimov, A.E., Nabiev, I., Sukhanova, A. (2014) Development and potential applications of microarrays based on fluorescent nanocrystal-encoded beads for multiplexed cancer diagnostics. In: J. Popp, V.V. Tuchin, D.L. Matthews, F.S. Pavone, eds., Biophotonics: Photonic Solutions for Better Health Care IV,  Proc. of SPIE, 9129, 91292C-1—91292C-9.

19. Samokhvalov, P., Linkov, P., Michel, J., Molinari, M., Nabiev, I. (2014) Photoluminescence quantum yield of CdSe-ZnS/CdS/ZnS core-multishell quantum dots approaches 100% due to enhancement of charge carrier confinement. In: W.J. Parak, M. Osinski, K.I. Yamamoto, eds. Colloidal Nanoparticles for Biomedical Applications IX. Proceedings of SPIE, Vol. 8955, 89550S.

18. Dayneko, S., Tameev, A., Tedoradze, M., Martynov, I., Linkov, P., Samokhvalov, P., Nabiev, I., Chistyakov, A. (2014) Hybrid bulk heterojunction solar cells based on low band gap polymers and CdSe nanocrystals. In: A. Freundlich, J.-F. Guillemoles, eds. Physics, Simulation, and Photonic Engineering of Photovoltaic Devices III.  Proceedings of SPIE, 8981, 898113.

17. Samokhvalov, P.S., Artemyev, M.V., Nabiev, I.R. (2013) Current methods of the synthesis of luminescent semiconductor nanocrystals for biomedical applications. Nanotechnologies in Russia, 8(5–6), 409–422.

16. Rumyantsev, K.A., Shemetov, A.A., Nabiev, I., Sukhanova, A.V. (2013) Interactions of proteins and peptides with nanoparticles: structural and functional aspects. Nanotechnologies in Russia, 8(11–12), 18–34.

15. Mochalov, K.E., Efimov, A.E., Bobrovsky, A.Yu., Agapov, I.I., Chistyakov, A.A., Oleinikov, V.A., Nabiev, I. (2013) High-resolution 3D structural and optical analyses of hybrid or composite materials by means of scanning probe microscopy combined with the ultramicrotome technique: An example of application to engineering of liquid crystals doped with fluorescent quantum dots. In: J.-M. Fédéli, L. Vivien, and M. K. Smit, eds. Integrated Photonics: Materials, Devices, and Applications II. Proc. SPIE, 8767, 876708. DOI:10.1117/12.2017088.

14. Sukhanova, A., Even-Desrumeaux, K., Chames, P., Baty, D., Artemyev, M., Oleinikov, V., Nabiev, I. (2012) Engineering of ultra-small diagnostic nanoprobes through oriented conjugation of single-domain antibodies and quantum dots. Nature Protocols / Protocols Exchange, DOI: 10.1038/protex.2012.042; http://www.nature.com/protocolexchange/protocols/2463

13.    Дайнеко, C.В., Артемьев, М.В., Набиев, И.Р., Тедорадзе, М.Г., Чистяков, А.А. (2012) Солнечные ячейки на основе гибридных гетероструктур из органических полупроводников и квантовых точек. Нано- и микросистемная техника, 9, 2–6.

12.    Sukhanova, A., Poly, S., Shemetov, A., Nabiev, I. (2012) Quantum dots induce charge-specific amyloid-like fibrillation of insulin at physiological conditions. In : S.H. Choi, J.-H. Choy, U. Lee, V.K. Varadan, eds. Nanosystems in Engineering and Medicine. Proceedings of SPIE, Vol. 8548 (SPIE, Bellingham, WA 2012), 85485F. DOI: 10.1117/12.946606. 

11.    Bouchonville, N., Molinari, M., Le Cigne, A., Troyon, M., Sukhanova, A., Nabiev, I. (2012) Semiconductor quantum dots affect the fluidity of Halobacterium salinarum purple membranes through disruption of bacteriorhodopsin trimer organization. In : S.H. Choi, J.-H. Choy, U. Lee, V.K. Varadan, eds. Nanosystems in Engineering and Medicine. Proceedings of SPIE, Vol. 8548 (SPIE, Bellingham, WA 2012), 85480V.

10.  Hafian, H., Sukhanova, A., Chames, P., Baty, D., Pluot, M., Cohen, J.H.M., Nabiev, I., Millot, J.M. (2012) Bi-photon imaging and diagnostics with the ultra-small diagnostic probes engineered from semiconductor nanocrystals and single-domain antibodies. In : S.H. Choi, J.-H. Choy, U. Lee, V.K. Varadan, eds. Nanosystems in Engineering and Medicine Proceedings of SPIE, Vol. 8548 (SPIE, Bellingham, WA 2012), 85480R. DOI : 10.1117/12.960493

9.   Artemyev, M., Nabiev, I. (2012) Molecular beacons involving highly luminescent colloidal quantum dots. Journal of Nanophotonics, 6(1), 060304.

8.  Artemyev, M. (2012) Resonance energy transfer in conjugates of semiconductor nanocrystals and organic dye molecules. Journal of Nanophotonics, 6(1), 061705.

7.  Oleinikov, V., Generalova, A., Sukhanova, A., Artemyev, M., Zubov, V., Nabiev, I. (2012) Quantum dot-containing polymer particles with thermosensitive fluorescence. In:  H. Mohseni, M.H. Agahi, and M. Razeghi, eds. Biosensing and Nanomedicine V. Proceedings of SPIE, Vol. 8460, (SPIE, Bellingham, WA 2012), 84600Y.

6.  Dayneko, S.V., Tedoradze, M.G., Artemyev, M.V., Nabiev, I., Chistyakov, A.A. (2012) Engineering of hybrid heterostructures from organic semiconductors and semiconductor quantum dots for advanced photovoltaic applications. In: L. Tsakalakos, ed. Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion III. Proceedings of SPIE, Vol. 8471 (SPIE, Bellingham, WA 2012), 84710W. 

5.  Artemyev, M., Sukhanova, A., Krutokhvostov, R., Melnikau, D., Oleinikov, V., Nabiev, I. (2012) Low-field magnetic circular dichroism in silver and gold colloidal nanoparticles of different size, shape, and aggregation. In: M.I. Stockman, ed. Plasmonics: Metallic Nanostructures and Their Optical Properties X. Proceedings of SPIE, Vol. 8457 (SPIE, Bellingham, WA 2012) 845729.

4.  Bouchonville, N., Le Cigne, A., Sukhanova, A., Saab, M.-b., Troyon, M., Molinari, M., Nabiev, I. (2012) Controlled FRET efficiency in nano-bio hybrid materials made from semiconductor quantum dots and bacteriorhodopsin. In:  H. Mohseni, M.H. Agahi and M. Razeghi, eds. Biosensing and Nanomedicine V. Proceedings of SPIE, Vol. 8460 (SPIE, Bellingham, WA 2012) 84600X.

3.  Bobrovsky, A., Mochalov, K., Oleinikov, V., Shibaev, V., Artemyev, M., Nabiev, I. (2012) Novel cholesteric materials doped with CdSe/ZnS quantum dots with photo-and electrotunable circularly polarized emission. In: I. Choon Khoo ed.  Liquid Crystals XVI. Proceedings of SPIE, Vol. 8475 (SPIE, Bellingham, WA 2012) 847514.

2.  Oleinikov, V., Bouchonville, N., Molinari, M., Sizova, S., Mochalov, K., Chistyakov, A., Sukhanova, A., Schapov, A., Artemyev, M., Lukashev, E., Nabiev, I. (2012) Extension of the spectral range of bacteriorhodopsin functional activity by energy transfer from quantum dots. In: N. Kobayashi, F. Ouchen, and I. Rau eds. Nanobiosystems: Processing, Characterization, and Applications V.  Proceedings of SPIE, Vol. 8464 (SPIE, Bellingham, WA 2012), 84640Z.

1.  Sukhanova, A., Even-Desrumeaux, K., Millot, J., Chames, P., Baty, D., Artemyev, M., Oleinikov, V., Cohen, J. H. M., Nabiev, I. (2012) Oriented conjugates of monoclonal and single-domain antibodies with quantum dots for flow cytometry and immunohistochemistry diagnostic applications. In: W.J. Parak, K. Yamamoto, M. Osinski, eds. Colloidal Nanocrystals for Biomedical Applications VII. Proceedings of SPIE, Vol. 8232 (SPIE, Bellingham, WA 2012) 82320T.

 

5. Ефимов, А.Е., Бобровский, А.Ю., Агапов, И.И., Агапова, О.И., Олейников, В.А., Набиев, И.Р., Мочалов, К.Е. (2016) Сканирующая ближнепольная оптическая нанотомография: метод многопараметрического 3D-исследования наноструктурированных материалов. Письма в журнал технической физики, 42(4), 9–15.

4. Билан, Р.С., Бражник, К.И., Шамс, П., Бати, Д., Набиев, И.Р., Суханова, А.В. (2014) Ориентированные конъюгаты однодоменных антител и флуоресцентных нанокристаллов: новое поколение диагностических нанометок для высокопроизводительной детекции онкомаркеров. Российский биотерапевтический журнал, 13(4), 11-16.

3. Бражник, К.И., Соколова, З.А., Барышникова, М.А., Билан, Р.С., Набиев, И.Р., Суханова, А.В. (2014) Разработка суспензионных микрочипов на основе микросфер, кодированных флуоресцентными нанокристаллами, и принципы их использования для многопараметрической диагностики онкологических заболеваний. Российский биотерапевтический журнал, 13(4), 3-10.

2. Котковский, Г.Е., Кузищин, Ю.А., Мартынов, И.Л., Набиев, И.Р., Чистяков, А.А. (2013) Фотофизические свойства пористого кремния и его применение в технике и биомедицине. Ядерная физика и инжиниринг, 4(2), 174–192.

1. Бражник, К.И., Барышникова, М.А., Соколова, З.И., Суханова, А.В. (2013) Новые направления в исследовании и ранней диагностике рака с применением детекционных систем на основе флуоресцентных нанокристаллов. Российский биотерапевтический журнал, 12(3), 11–24.

Заявки

24. Набиев И.Р., Суханова А.В., Ткачук А.П., Соколов П.М. Набор для дифференциальной диагностики заболеваний. Изобретение. Заявка на патент № 2018127122. Дата подачи: 23.07.2018.

23. Вохминцев К.В., Довженко, Д.С. Регенерируемый нанопроволочный биосенсор для регистрации маркеров заболеваний. Изобретение. Заявка на патент № 2016149208. Дата подачи: 14.12.2016.

22. Набиев И.Р., Суханова А.В., Терехин В.В. Способ создания наборов магнитных флуоресцентных микросфер. Изобретение. Заявка на патент № 2016125966. Дата подачи: 29.06.2016.

Зарегистрированные объекты интеллектуальной собственности

21. Самохвалов П.С., Линьков П.А. Способ коллоидного синтеза фотолюминесцентных наночастиц сверхмалого размера структуры ядро/оболочка. Изобретение. Патент РФ № 2645838. Зарегистрирован в Государственном реестре изобретений РФ 28.02.2018.

20. Набиев, И.Р., Мочалов, К.Е., Ракович, Ю.П., Соколов, П.М., Довженко, Д.С., Мезин, А.В. Способ модификации свойств молекул образца и устройство для его осуществления. Изобретение. Патент РФ № 2666853. Зарегистрирован в Государственном реестре изобретений РФ 12.09.2018.

19. Мочалов К.Е., Ефимов А.Е., Соколов П.М., Набиев И.Р. Сканирующий зондовый нанотомограф с модулем оптического анализатора. Изобретение. Патент РФ № 2645437. Зарегистрирован в Государственном реестре изобретений РФ 21.02.2018.

18. Соколов П.М., Суханова А.В., Бозрова С.В., Набиев И.Р. Способ биологической визуализации. Изобретение. Патент РФ № 2639125. Зарегистрирован в Государственном реестре изобретений РФ 19.12.2017.

17. Суханова А.В., Билан Р.С., Терехин В.В., Набиев И.Р. Способ получения аналитической тест-системы на основе суспензионных микрочипов для детекции маркеров заболеваний. Изобретение. Патент РФ № 2638787. Зарегистрирован в Государственном реестре изобретений РФ 15.12.2017.

16. Соколов П.М., Суханова А.В., Набиев И.Р. Способ направленного разрушения раковых клеток. Изобретение. Патент РФ № 2638446. Зарегистрирован в Государственном реестре изобретений РФ 13.12.2017.

15. Билан Р.С., Суханова А.В., Набиев И.Р. Способ создания наборов микросфер, оптически кодированных флуоресцентными нанокристаллами и несущих на своей поверхности распознающие биологические молекулы. Изобретение. Патент РФ № 2624853. Зарегистрирован в Государственном реестре изобретений РФ 07.07.2017.

14. Набиев И.Р., Самохвалов П.С. Универсальный адаптер для использования микрочипов планарного типа в планшетных ридерах для иммунофлуоресцентного анализа. Полезная модель. Патент РФ № 172401. Зарегистрирован в Государственном реестре полезных моделей РФ 06.07.2017.

13. Довженко Д.С., Билан Р.С., Самохвалов П.С., Вохминцев К.В., Суханова А.В., Набиев И.Р. Способ создания регенерируемого биосенсора на основе комплекса фотонного кристалла с аффинными молекулами. Изобретение. Патент РФ № 2618606. Зарегистрирован в Государственном реестре изобретений РФ 04.05.2017.

12. Линьков П.А., Самохвалов П.С., Набиев И.Р. Синтез фотолюминесцентных полупроводниковых квантвых точек сверхмалого размера. Секрет производства. Дата регистрации секрета производства: 16.06.2016.

11. Дайнеко С.В., Чистяков А.А., Никитенко В.Р., Набиев И.Р., Самохвалов П.С., Лыпенко Д.А., Дмитриев А.В., Мальцев Е.И., Носова Г.И., Березин И.А., Якиманский А.В. Гибридная светодиодная структура на основе органических полупроводников и полупроводниковых наночастиц. Полезная модель. Патент РФ № 161294. Зарегистрирован в Государственном реестре полезных моделей РФ 28.03.2016.

10. Самохвалов П.С., Линьков П.А., Набиев И.Р. Секрет производства люминесцентных квантовых стержней типа ядро/оболочка CdSe/ZnS. Секрет производства. Дата регистрации секрета производства: 18.12.2015.

9. Суханова А.В., Набиев И.Р. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител. Изобретение. Патент РФ №2560699. Зарегистрирован в Государственном реестре изобретений РФ 22.07.2015.

8. Самохвалов П.С. Nanocrystal Editor. Программа для ЭВМ. Рег. № 2015611164. Зарегистрирована в Государственном реестре программ для ЭВМ РФ 26.01.2015.

7. Генералова А.Н., Суханова Т.В., Сизова С.В., Манохина В.В., Мочалов К.Е., Олейников В.А., Набиев И.Р. Способ формирования многофункциональных микросистем. Изобретение. Патент РФ №2532559. Зарегистрирован в Государственном реестре изобретений РФ 10.09.2014.

6. Суханова Т.В., Щапов А.Ф., Манохина В.В., Набиев И.Р., Олейников В.А., Сизова С.В. Способ включения квантовых точек методом соосаждения в пористые частицы карбоната кальция. Изобретение. Патент РФ № 2509057. Зарегистрирован в Государственном реестре изобретений РФ 10.03.2014.

5. Самохвалов П.С., Набиев И.Р. Nanocrystal Builder. Программа для ЭВМ. Рег. № 2013661188. Зарегистрирована в Государственном реестре программ для ЭВМ РФ 29.11.2013.

4. Самохвалов П.С., Линьков П.А., Набиев И.Р. Производство сплавных квантовых точек типа ядро/оболочка, имеющих состав CdSSe/ZnS. Секрет производства. Дата регистрации секрета производства: 08.07.2013.

3. Самохвалов П.С., Линьков П.А., Артемьев М.В., Набиев И.Р. Производство люминесцентных квантовых точек типа ядро/оболочка, имеющих состав CdSe/ZnS. Секрет производства. Дата регистрации секрета производства: 08.07.2013.

2. Котковский Г. Е., Мартынов И. Л., Сычев А. В., Чистяков А. А., Громов Е. В., Передерий А. Н., Тугаенко А. В., Цыбин А. С. Устройство для получения и анализа ионов аналита. Изобретение. Патент РФ № 2434226. Зарегистрирован в Государственном реестре изобретений РФ 20.11.2011. Поставлен на учет в НИЯУ МИФИ в 2012.

1. Котковский Г. Е., Мартынов И. Л., Сычев А. В., Чистяков А. А., Громов Е. В., Передерий А. Н., Тугаенко А. В., Цыбин А. С. Способ получения и анализа ионов аналита. Изобретение. Патент РФ № 2434225. Зарегистрирован в Государственном реестре изобретений РФ 20.11.2011. Поставлен на учет в НИЯУ МИФИ в 2012.

Back to top